Hybrid Fuzzy Algorithm for the Novel Yokeless Axial Flux-Switching Permanent-Magnet Motor

Authors

  • Hamid Radmanesh Associate Professor, Shahid Sattari Aeronautical University of Science and Technology, Tehran, Iran.
Abstract:

Flux switching permanent magnet synchronous motor (FMSM) has the characteristics such as large output torque, fast speed response and high reliability, so it can be widely used in the field of high-performance and high precision control.In the permanent magnet synchronous motor control system, the speed loop usually adopts the PI control algorithm. Although the PI control algorithm is relatively simple, there is a problem of adjusting the PI parameters, so the traditional PI also has limitations. However, the fuzzy controllers also have a big disadvantage. When the motor load suddenly increases, the fuzzy PI control has difficult to effectively eliminate the system steady-state error, so the control precision is not high, which is mainly due to the lack of integral effect controller. A new fuzzy PI control algorithm for a novel yokeless and segmented armature axial flux-switching sandwiched permanent-magnet motor (YASA-AFFSSPM) is proposed in this paper. In the conventional fuzzy PI control of the permanent magnet synchronous motor the torque ripple is large and the control accuracy is not high precise. A new fuzzy PI control algorithm is proposed to solve this problem, and a prototype of the YASA-AFFSSPM motor is fabricated and the method is tested. The experimental results demonstrate that the new fuzzy PI controller can improve the robustness of the system and improve the precision. Further, the dynamic performance of the YASA-AFFSSPM motor is excellent.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A Novel High-Performance Field-Weakening Control for Axial Flux-Switching Permanent-Magnet Motor

By combining the field-weakening control principle of a new axial flux-switching permanent-magnet motor (AFFSSPM) with the space vector pulse width modulation (SVPWM) and maximum torque per voltage (MTPV) control principle, a novel field-weakening control strategy for AFFSSPM is proposed in this paper. In the first stage of the field-weakening, the difference between the reference voltage updat...

full text

Sensor-less Vector Control of a Novel Axial Field Flux-Switching Permanent-Magnet Motor with High-Performance Current Controller

Axial field flux switching motor with sandwiched permanent magnet (AFFSSPM) is a novel of flux switching motor. Based on the vector control method, the mathematical model of the AFFSSPM is derived and the operating performance of the AFFSSPM in the overall operating region is investigated.A novel control method for the AFFSSPM drive system, including the id =0, maximum torque per ampere, consta...

full text

Design Optimization of Axial Flux Surface Mounted Permanent Magnet Brushless DC Motor For Electrical Vehicle Based on Genetic Algorithm

This paper presents the design optimization of axial flux surface mounted Permanent Magnet Brushless DC motor based on genetic algorithm for an electrical vehicle application. The rating of the motor calculated form vehicle dynamics is 250 W, 150 rpm. The axial flux surface mounted Permanent Magnet Brushless DC (PMBLDC) motor was designed to fit in the rim of the wheel. There are several design...

full text

Optimal Design of Axial Flux Permanent Magnet Synchronous Motor for Electric Vehicle Applications Using GAand FEM

Axial Flux Permanent Magnet (AFPM) machines are attractive candidates for Electric Vehicles (EVs) applications due to their axial compact structure, high efficiency, high power and torque density. This paper presents general design characteristics of AFPM machines. Moreover, torque density of the machine which is selected as main objective function, is enhanced by using Genetic Algorithm (GA) a...

full text

A novel axial flux permanent magnet generator for wind turbines

This paper presents the development of a framework used to optimize and experimentally validate a novel axial flux direct-drive (DD) permanent magnet generator (PMG) for the offshore wind turbine market. This technology aims to offer significant levelized cost of energy (LCoE) reductions via capital expenditure and operating expense (CAPEX and OPEX) savings – a key objective for the offshore in...

full text

Performance Analysis of a Novel Three-phase Axial Flux Switching Permanent Magnet Generator with Overlapping Concentrated Winding

This paper proposes a novel axial flux switching permanent magnet generator for small wind turbine applications. Surface mounted axial flux switching permanent magnet (SMAFSPM) machine is a new type of these machines that is introduced in this paper. One of the most important challenges in optimal designing of this kind of machines, is ease of construction and maintenance. One of the main featu...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 52  issue 2

pages  4- 4

publication date 2020-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023